If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81d^2-64=0
a = 81; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·81·(-64)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144}{2*81}=\frac{-144}{162} =-8/9 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144}{2*81}=\frac{144}{162} =8/9 $
| 24.99+g=9.99 | | 25+3.50=4.50x | | 2s+2s=8 | | 8/3y-1=39 | | 64-81d^2=0 | | 1.5=51/x | | -5x-x+10=15-6x-5 | | -14k+-6k-(-17k)+-3k-9k=-15 | | 10x+0.10=5x+0.20 | | 2*t36=16 | | 2k-2k+4k-3k=20 | | 1−35=4x+15−3x. | | 3/8x-4=26 | | (9x-19)=(5x-17)=(3x+3) | | 7x-19=2+7(x-3) | | 3/4(z-6)=1 | | 0=-16t^2+208t | | 3b+2b+65=180 | | 8X-9=3x-21 | | 4(3x+3)=-4(-3x+1) | | 3y+21=2y+8 | | t3=-6 | | 4x+39=16x–12 | | 7y-10=20 | | 13t-2t-9t+4t=18 | | -137=-10n+3 | | 5x+16=46x | | 2(x)+5=(x)-2 | | -2(7x-4)=92 | | y=√1+9 | | (6)5x=x+14+8x+9+x+17 | | 16+5x=46x |